Exoscises: from the shotes - -[!] Wat of Rem have broody bee trested in the exercise documents. (1) 2D-problem - (1) 1a) $R(\vartheta = 0) = ?$ 1b) R(-ϑ) =? 1c) R (3) -1=? RT 1d) $v3 = R(\theta 2)v2 = R(\theta 2)R(\theta 1)v1 = R(?)V1$? id we consider $R_2(\Theta) - OS in 2D$ La $R_2(\Theta=0)$ $S = SU(\Theta=0)$ $S = SU(\Theta=0)$ S = SUIn all well, the rotation matrix around the origin equals to the Matrix I dentity of $\frac{1-5-c}{2}(-\theta) = |\cos(\theta) - \sin(-\theta)| |\cos(\theta) - \sin(\theta)|$ $\frac{1-5-c}{2}(-\theta) = |\cos(\theta) - \sin(\theta)| |\cos(\theta) - \sin(\theta)|$ $\frac{1-5-c}{2}(-\theta) = |\cos(\theta) - \cos(\theta)|$ $\frac{1-d}{R(\theta_3)}R(\theta_4) = \frac{c_2}{s_2} \frac{-s_2}{s_1} \frac{c_4}{s_1} \frac{-s_1}{c_1}$ - (CgS1+ C152) = |C1Ca - S1S1 |S2C1+C2S9 -Sys2+CyC2 = [C12 |S12 Some as -212 P(0,) R(0,) = 1512 before That molos sence: successive rotations around the same axis of rot show is epulvalent to a langle rotation of a sum of the 2 40t strous 区

Example of use: Let us assume a movement of the point v1 in two phases composed of

1.) rotation (always around the origin O for all this section 2.1.2) by an angle $\theta 1$

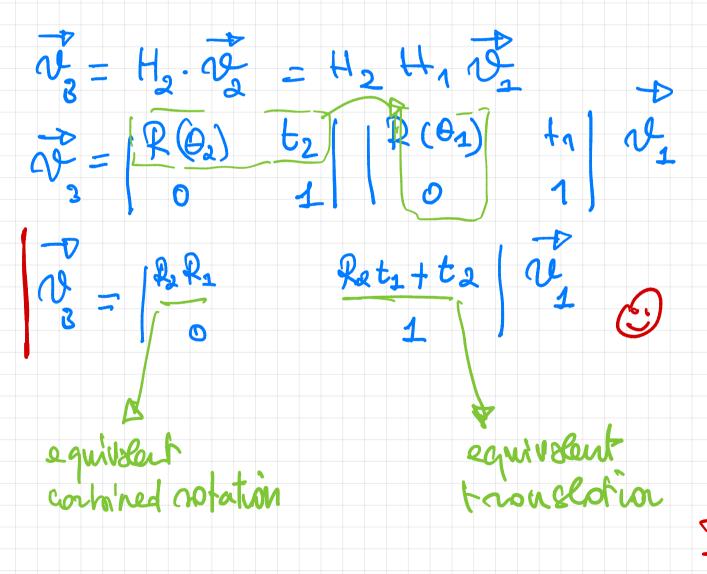
2.) translation of t1

to get $v2 = R(\theta 1) v1 + t1$

These four consecutive movements ($\mathbf{R}(\theta 1)$, t1, $\mathbf{R}(\theta 2)$, t2) can be expressed in a single homogeneous

Exercise: Perform this operation with the help of two homogeneous matrices. Calculate the homogeneous matrix of the complete operation by matrix product. This result will contain the total translation and the total rotation equivalent to the four movements.

trousformation Let us apply again a motion composed of two phases ($\mathbf{R}(\theta 2)$, $\mathbf{t}2$) to $\mathbf{v}2$: Homogenous transformation H2 **3.)** rotation around the origin O by an angle θ 2 4.) translation of t2 to finally get v3: $v3 = R(\theta_2) v2 + t2 = R(\theta_2) R(\theta_1) v1 + R(\theta_2) t1 + t2$ matrix which is calculated simply by matrix products.



(3)	Exercise 2	omogneou	s meti	CO -		
<u>U</u>	Ex 2a	a): Pure rotation? Pure trans b) Translation of t, then rota	lation?			
	Ex. 2	c) Rotation, then translation	i.			
	Reve	rse? (Check it !)				
	EPFL			page 39		
2-0	Hp	= R	0 1	- PU	re 20tol	róc Estión
	++		上 1	- No	2 trous 20tation (0=0) =	estion I
2.6	H		D D			
	H=H2	. ++-= €	2 0	T t	= 2	
	H	o HR	7		0 R	6
Obser	H = HT	o HP. HP = /	<u>T</u> t			1)
U/.	Nou	commut	Thre	trons	Konubl	No.

(4)

Exercise (on slides):

- a.) $K_{DGM}(\vartheta i) = (\text{rot } \vartheta_1 \text{ around } [0, 0]^T) \text{ then } (\text{rot } \vartheta_2 \text{ around } [L_1c_1, L_1s_1]^T) \text{ then } (\text{rot } \vartheta_4 \text{ around } [L_1c_1 + L_2c_{12},]^T)$
- b.) $K_{DGM}(\vartheta i) = (\text{rot } \vartheta_4 \text{ around } [?]^T) \text{ then } (\text{rot } \vartheta_2 \text{ around } [?]^T)$ then $(\text{rot } \vartheta_1 \text{ around } [?]^T)$
- c.) Calculate $K_{DGM}(\vartheta i)$ of the SCARA. Which method will be simpler? Where does the rotation matrix come from around ϑ_1 , left or right in the chain of multiplications?

Exercise (on slides): A working point of the wrist is at a horizontal distance L4 from the axis of $\vartheta 4$ with $P(\vartheta i = 0) = [L1 + L2 + L4, 0, 0, 1]^T$. Give the position of this point as a function of the robot variables $P(\vartheta i)$.

 α -Rot θ_1 , around $(\hat{0}, 0)$ \rightarrow +17/2

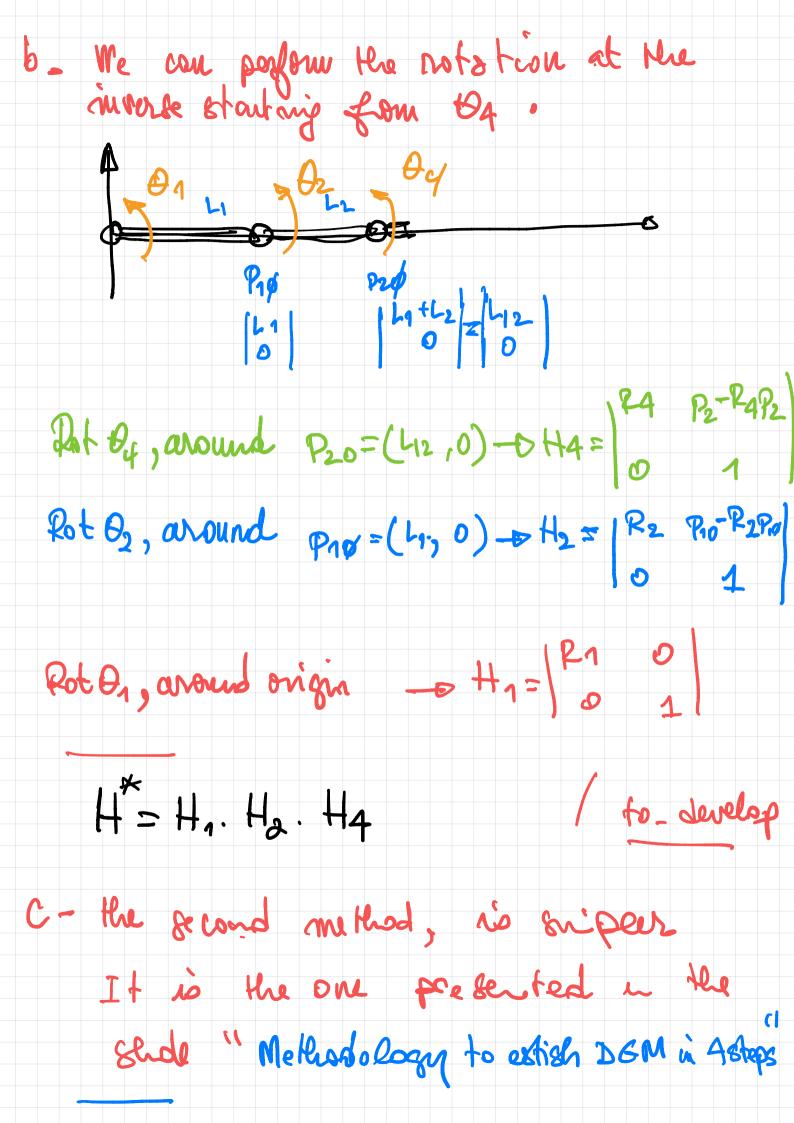
Pot &, wround p_= (L_1 C_1, L_1 S_1) -0 H2 = |P2 P1-P2P1

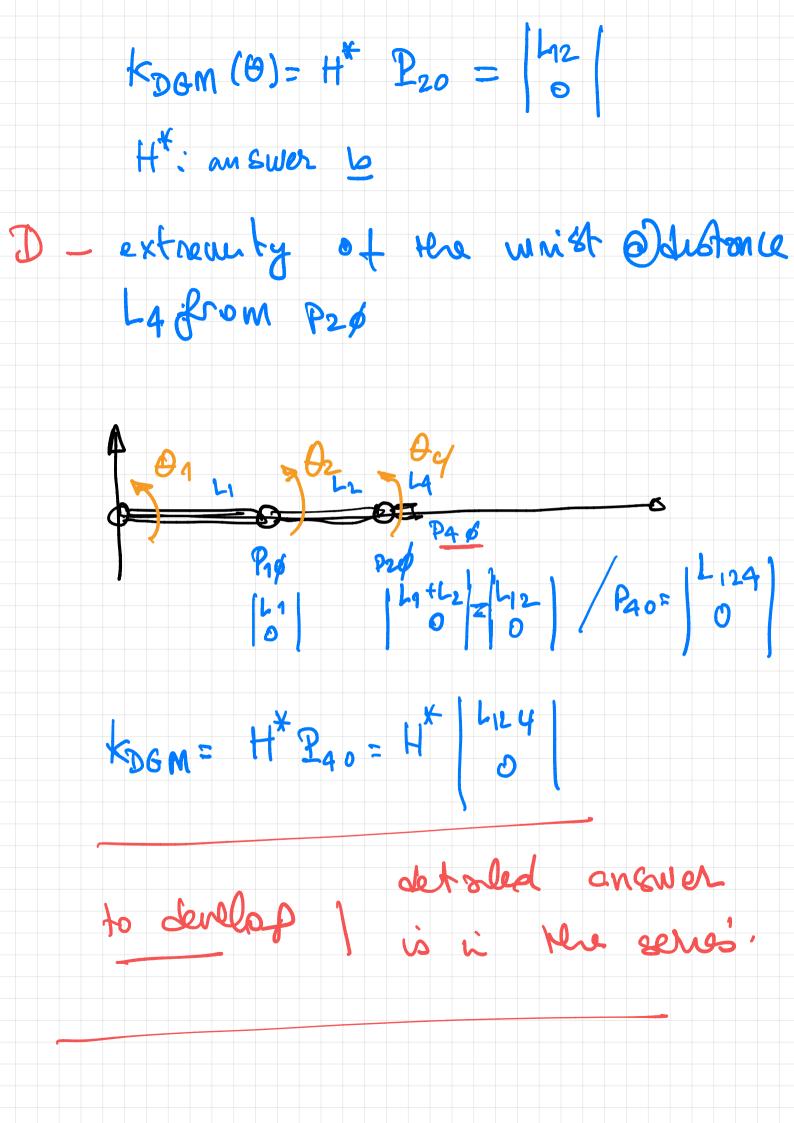
Rot 04, around p2= (6969 + 626927 699 + 62692)

H4 = | P4 | P4 - P4 P2 |

12) H = H4. H2. H1 = KDGM (8, B2, B4)

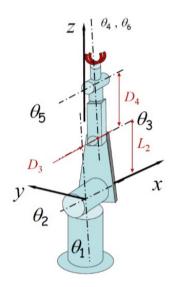
to develop





Exercise 3

The homogeneous matrices K_5 and K_6 of the DGM of the PUMA (see figure below) are given in the course (see lecture slides). Give the missing matrices K_i , for i = 1,2,3,4.



The homogeneous matrices of the PUMA DGM (according to the generalized coordinate system of the course) are as follows:

$$K_4 = \begin{pmatrix} c_4 & -s_4 & 0 & D_3 v_4 \\ s_4 & c_4 & 0 & -D_3 s_4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$K_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & c_3 & -s_3 & L_2 s_3 \\ 0 & s_3 & c_3 & L_2 v_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$K_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & c_3 & -s_3 & L_2 s_3 \\ 0 & s_3 & c_3 & L_2 v_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$K_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & c_2 & -s_2 & 0 \\ 0 & s_2 & c_2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$K_1 = \begin{pmatrix} c_1 & -s_1 & 0 & 0 \\ s_1 & c_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(6) [] Not mandstory En you (a)

Exercise: Find the homogeneous transformation matrix leading from the form $\{A, B, C\}$ to $\{A', B', C'\}$.

$$A = [1 \ 0 \ 0]^T$$
, $B = [0 \ 0 \ 0]^T$ and $C = [0 \ 1 \ 0]^T$ to $A' = [1 \ 0 \ 1]^T$, $B' = [1 \ -1 \ 1]^T$ and $C = [0 \ -1 \ 1]^T$

What are the axis, the angle of rotation, the translation in the direction of the axis? The solution is easily found with a small drawing. Imagine the three points linked to a solid.

Exercise:

- 4a) Is the previous paragraph completely correct?
- 4b) Find the center of rotation 1.) by a drawing, 2.) using the previous formula 3.) by looking for an eigenvector of the homogeneous matrix.
- 4c) Find the homogeneous matrix which describes a rotation of 60° around O
- 4d) Find the homogeneous matrix which describes a translation of un indirection x , then a rotation of 60 $^{\circ}$ around O
- 4e) Find the homogeneous matrix which describes a 60° rotation around [1,1] T.
- 4.f) An object with two points v1, w1 is moved so that these points are found at locations v2, w2.

$$v1 = [1.0]^{T}$$
, $w1 = [1.1]^{T}$, $v2 = 0.5 [1 - \sqrt{3}.1 - \sqrt{3}]^{T}$, $w2 = 0.5 [2 - \sqrt{3}.1]^{T}$

Find the homogeneous matrix, θ , ${\it p}$ (graphical solution) which describes this displacement.

Exercise 4

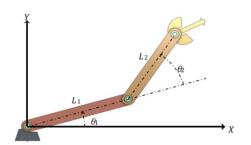
Find the IGM (Inverse geometric model) of a 2 DOF planar robot (see figure below): given x and y, what are θ_1 and θ_2 ?

$$x = L_1 c_1 + L_2 c_{1+2}$$
$$y = L_1 s_1 + L_2 s_{1+2}$$

2/3

Robotics and manufacturing

October 27, 2021



→ Solve a
quadroce
genous.

Hint: use the trigonometric formulas for the sine and cosine of the sum of two angles, as well as the one of the sum of squares of sine and cosine, to obtain a system of 4 equations with 4 unknowns, and discuss the results.

